Annual sulfur cycle in a warm monomictic lake with sub-millimolar sulfate concentrations
نویسندگان
چکیده
BACKGROUND We studied the annual variability of the concentration and isotopic composition of main sulfur species and sulfide oxidation intermediates in the water column of monomictic fresh-water Lake Kinneret. Sulfate concentrations in the lake are <1 mM and similar to concentrations that are proposed to have existed in the Paleoproterozoic ocean. The main goal of this research was to explore biogeochemical constrains of sulfur cycling in the modern low-sulfate fresh-water lake and to identify which processes may be responsible for the isotopic composition of sulfur species in the Precambrian sedimentary rocks. RESULTS At the deepest point of the lake, the sulfate inventory decreases by more than 20% between March and December due to microbial sulfate reduction leading to the buildup of hydrogen sulfide. During the initial stages of stratification, sulfur isotope fractionation between sulfate and hydrogen sulfide is low (11.6 ‰) and sulfur oxyanions (e.g. thiosulfate and sulfite) are the main products of the incomplete oxidation of hydrogen sulfide. During the stratification and at the beginning of the lake mixing (July-December), the inventory of hydrogen sulfide as well as of sulfide oxidation intermediates in the water column increases and is accompanied by an increase in sulfur isotope fractionation to 30 ± 4 ‰ in October. During the period of erosion of the chemocline, zero-valent sulfur prevails over sulfur oxyanions. In the terminal period of the mixing of the water column (January), the concentration of hydrogen sulfide decreases, the inventory of sulfide oxidation intermediates increases, and sulfur isotope fractionation decreases to 20 ± 2 ‰. CONCLUSIONS Sulfide oxidation intermediates are present in the water column of Lake Kinneret at all stages of stratification with significant increase during the mixing of the water column. Hydrogen sulfide inventory in the water column increases from March to December, and sharply decreases during the lake mixis in January. Sulfur isotope fractionation between sulfate and hydrogen sulfide as well as concentrations of sulfide oxidation intermediates can be explained either by microbial sulfate reduction alone or by microbial sulfate reduction combined with microbial disproportionation of sulfide oxidation intermediates. Our study of sulfur cycle in Lake Kinneret may be useful for understanding the range of biogeochemical processes in low sulfate oceans over Earth history.
منابع مشابه
Variation in temporal [C]plankton photosynthesis among warm monomictic lakes of coastal British Columbia
Seasonal patterns of [C]phytoplankton photosynthesis (PP) were examined in six warm monomictic lakes of coastal British Columbia. Four of our study lakes followed typical lake patterns with maximum PP occurring in the spring and minimal rates occurring during the winter. However, the spring maximum occurred several weeks earlier than lakes in other climatic regions. In addition, maximum rates o...
متن کاملSulfur biogeochemistry and isotopic fractionation in shallow groundwater and sediments of Owens Dry Lake, California
Groundwater and sediment samples (~1 m depth) at sites representative of different groundwater pathways were collected to determine the aqueous speciation of sulfur and the fractionation of sulfur isotopes in aqueous and solid phases. In addition, selected sediment samples at 5 depths (from oxic to anoxic layers) were collected to investigate the processes controlling sulfur biogeochemistry in ...
متن کاملPotential sulfur metabolisms and associated bacteria within anoxic surface sediment from saline meromictic Lake Kaiike (Japan).
The effects of light and of added electron donors and sulfur compounds on sulfur metabolisms in the microbial mat dilutions from the saline meromictic Lake Kaiike were investigated. Sulfide concentrations in the mat dilution without any electron donor gradually increased by approximately 0.6-1 mM in the dark. Additions of lactate, acetate, H(2)/CO(2), propionate and iso-butylate stimulated sulf...
متن کاملTrends of Extreme Temperature Over the Lake Urmia Basin, Iran, During 1987-2014
The variability of temperature extremes has been the focus of attention during the past several decades and had a great influence on the hydrologic cycle. A long-term, high-quality daily maximum (TX) and minimum temperature (TN) of seven stations was used to determine the spatial and temporal characteristics of extreme temperature events in Lake Urmia Basin in Iran during 1987 to 2014. The RCli...
متن کاملResponse of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado
Trends in precipitation chemistry and hydrologic and climatic data were examined as drivers of long-term changes in the chemical composition of high-elevation lakes in three wilderness areas in Colorado during 1985–2008. Sulfate concentrations in precipitation decreased at a rate of -0.15 to -0.55 leq/l/year at 10 high-elevation National Atmospheric Deposition Program stations in the state duri...
متن کامل